
Programmation récursive :

Exercice 1 :

On considère la fonctionmystere(n) définit par le code :

def mystere(n):
 if n == 0:
 return 1
 else:
 return n * mystere(n-1)

1. Quel est le résultat renvoyé par mystere(4) ? 24

mystere(4) = 4 × mystere(3) = 4 × 3 × mystere(2) = 4 × 3 × 2 ×mystere(1) = 4 × 3 × 2 ×
1 × mystere(0) = 4 × 3 × 2 × 1 × 1 = 24

2. Décrire, en français, ce que fait cette fonction :

Cette fonction calcule le produit de tous les entiers de 1 à n, c’est à dire la factorielle de n.

3. Proposer une version itérative documentée pour cette fonction :

def mystere(n : int) -> int :
 '''
 Calcule le produit de tous les entiers de 1 à n,
 c’est à dire la factorielle de n.
 Précondition :
 n (int) : entier naturel
 Postcondition :
 n! (int)
 Exemple :
 >>> mystere(4)
 24
 '''
 factorielle = 1
 for i in range(n) :
 factorielle = factorielle * (i + 1)
 print(factorielle)
 return factorielle

Exercice 2 :

On considère la fonctionsigma(n) définit par le code :

def sigma(n):
 resultat = 0
 for i in range(n+1) :
 resultat = resultat + i
 return resultat

1. Quel est le résultat renvoyé par sigma(0) ?

0

1. Quel est le résultat renvoyé par sigma(4) ?

10

1. Décrire, en français, ce que fait cette fonction :

Cette fonction calcule la somme de tous les entiers de 1 à n

2. Proposer une version récursive documentée pour cette fonction :

def sigma(n : int) -> int:
 '''
 Calcule la somme de tous les entiers de 1 à n.
 Précondition :
 n (int) : entier naturel
 Postcondition :
 somme de 1 à n (int)
 Exemple :
 >>> sigma(4)
 10
 '''
 if n==0 :
 return 0
 else :
 return n + sigma(n-1)

