Cet exercice porte sur la programmation orientée objet, sur les arbres binaires de
recherche et la récursivité.

Chaque année, plusieurs courses de chiens de traineaux sont organisées sur les
terrains enneigés. L'une d’elle, La Traversée Blanche, est une course se déroulant en
9 étapes. L'organisateur de cette course est chargé de créer un programme Python
pour aider a la bonne gestion de I'événement.

Partie A : la classe Chien

Afin de caractériser un chien, I'organisateur décide de créer une classe Chien avec
les attributs suivants :

e id_chien, un nombre entier correspondant au numéro attribué au chien lors de
son inscription a la course ;

* nom, une chaine de caractéres correspondant au nom du chien ;

 role, une chaine de caractéres correspondant au poste occupé par le chien :
en fonction de sa place dans l'attelage, un chien a un role bien défini et peut
étre "leader™, "swing dog”, "wheel dog"” ou "team dog".

 id_proprietaire, un nombre entier correspondant au numéro de I'équipe.

Le code Python incomplet de la classe Chien est donné ci-dessous.

1 class Chien:

2 def __init___(self, id_chien, nom, role, id_prop):
3 self.id_chien = id_chien

4 self.nom = nom

5 self.role = role

6 self._id_proprietaire = id_prop

def changer_role(self, nouveau_role):
"""'Change le réle du chien avec la valeur passée en
paramétre. """
9

0o ~

Voici un extrait des informations dont on dispose sur les chiens inscrits a la course.

Chiens inscrits a la course
id_chien nom role id_proprietraire
40 Duke wheel dog 10
41 Sadie team dog 10
42 Zeus swing dog 11
43 Roxie swing dog 11
44 Scout team dog 11
45 Ginger team dog 11
46 Helka team dog 11

Suite aux inscriptions, I'organisateur procede a la création de tous les objets de type
Chien et les stocke dans des variables en choisissant un nom explicite. Ainsi, I'objet
dont I'attribut id_chiien a pour valeur 40 est stocké dans la variable chien40.

1.

Ecrire l'instruction permettant d’instancier I'objet chien40 caractérisant le chien
ayant le numéro d’inscription 40.

Selon I'état de fatigue de ses chiens ou du profil de I'étape, le musher (nom
donné a la personne qui conduit le traineau) peut décider de changer le réle
des chiens dans l'attelage.

Recopier et compléter la méthode changer_role de la classe Chien.

Le propriétaire de Duke décide de Ilui attribuer le réle de ~leader”.
Ecrire I'instruction permettant d’effectuer cette modification.

Partie B : la classe Equipe

On souhaite a présent créer une classe Equipe ayant les attributs suivants :

num_dossard, un nombre entier correspondant au numéro inscrit sur le dossard
du musher ;

nom_equipe, une chaine de caractéres correspondant au nom de I'équipe ;

liste_chiens, une liste dobjets de type Chien dont chaque élément
correspond a un chien au départ de I'étape du jour ;

temps_etape, une chaine de caracteres (par exemple “2h34") représentant le
temps mis par I'équipe pour parcourir I'étape du jour ;

liste_temps, une liste de chaines de caractéres permettant de stocker les
temps de I'équipe pour chacune des 9 étapes. Cet attribut peut, par exemple,
contenir la liste : ["4h36", *3h57", "3h09", "5h49", "4h45", "3h26",
"4h57%, "5h52", "4h317].

On donne le code Python suivant de la classe Equipe.

1 class Equipe:

2 def __init__ (self, num_dossard, nom _equipe):
3 self_num_dossard = num_dossard

4 self_nom_equipe = nom_equipe

5 self_liste_chiens = []

6 self._temps_etape -
-

8

self_liste_temps 1
9 def ajouter_chien(self, chien):
10 self_liste_chiens_append(chien)
11
12 def retirer_chien(self, numero):
13 -
14
15 def ajouter_temps_etape(self, temps):
16 self_liste_temps.append(temps)

Pour la premiére étape, le musher de I'équipe numéro 11, représentée en Python par
I'objet eqll, décide de constituer une équipe avec les quatre chiens identifiés par les
numeéros 42, 44, 45 et 46. On donne ci-dessous les instructions Python permettant de
créer I'équipe eqll et l'attelage constitué des 4 chiens précédents.

eqll = Equipe(1ll, "Malamutes Endurants®)
eqll.ajouter_chien(chien42)
eqll.ajouter_chien(chien44)
eqll._ajouter_chien(chien4b)
eqll.ajouter_chien(chien46)

O WNE

Malheureusement, le musher s’apercoit que sa chienne Helka, chien numéro 46, n’est
pas au mieux de sa forme et il décide de la retirer de I'attelage.

4. Recopier et compléter la méthode retirer_chien ayant pour paramétre
numero, un entier correspondant au numéro attribué au chien lors de
l'inscription, et permettant de mettre a jour I'attribut 1iste_chiens aprés retrait
du chien dont la valeur de I'attribut id_chien est numero.

5. En vous aidant de la fonction précédente, écrire l'instruction qui permet de
retirer Helka de l'attelage de I'équipe eq11.

On donne a présent le code Python d’une fonction convert prenant pour parametre
chaine, une chaine de caractéres représentant une durée, donnée en heure et minute.
On supposera que cette durée est toujours strictement inférieure a 10 heures, temps
maximal fixé par le reglement pour terminer une étape.

1 def convert(chaine):
2 heure_dec = int(chaine[0]) + int(chaine[2] + chaine[3])/60
3 return heure_dec

6. Indiquer le résultat renvoyé par I'appel convert(*4h36").

7. Ecrire une fonction temps_course qui prend pour parameétre equipe de type
Equipe et qui renvoie un nombre flottant correspondant au cumul des temps de
I'équipe equipe a l'issue des 9 étapes de la course.
On rappelle que la classe Equipe dispose d’'un attribut liste_temps.

Partie C : classement a I'issue d’une étape

Chaque jour, a la fin de I'étape, on décide de construire un Arbre Binaire de Recherche
(ABR) afin d’établir le classement des équipes. Chaque nceud de cet arbre est un objet

de type Equipe.

Dans cet arbre binaire de recherche, en tout nosud :

* toutes les équipes du sous-arbre gauche sont strictement plus rapides que ce

nceud ;

* toutes les équipes du sous-arbre droit sont moins rapides ou sont a égalité avec

ce nceud.

Voici les temps, en heure et minute, relevés a l'issue de la premiére étape :

Temps a l'arrivée de la premiere étape

Equipe | eql

eq2

eq3

eqd

eqgs

eq6

eq’

eqs

eq9

eqlo

eqll

Temps | 4h36

3h57

3h09

5h49

4h45

3h26

4h51

5h52

4h31

3h44

4h26

Dans l'arbre binaire de recherche initialement vide, on ajoute successivement, dans
cet ordre, les équipes eql, eq2, eqg3, ..., eqll, 11 objets de la classe Equipe tous
construits sur le méme modéle que I'objet eql1 précédent.

8. Dans l'arbre binaire de recherche ci-dessous, les nceuds eql et eqg2 ont été
insérés. Recopier et compléter cet arbre en insérant les 9 noceuds manquants.

Figure 1. Premiers éléments de 'ABR

9. Indiquer quel parcours d’arbre permet d’obtenir la liste des équipes classées de

la plus rapide a la plus lente.

On donne ci-dessous la classe Noeud, permettant de définir les arbres binaires :

1 class Noeud:

2 def __init_ (self, equipe, gauche = None, droit = None):
3 self.racine = equipe
4
5

self.gauche gauche
self.droit = droit

On donne ci-dessous le code d’une fonction construction_arbre qui, a partir d’'une
liste d’éléments de type Noeud permet d’'insérer successivement chaque nceud a sa
place dans 'ABR.

1 def construction_arbre(liste):

2 a = Noeud(liste[O])

3 for 1 in range(l,len(liste)):
4 inserer(a, liste[i])

5 return a

La fonction construction_arbre fait appel a la fonction inserer qui prend pour
parametre arb, de type Noeud, et eq, de type Equipe. Cette fonction construit le nceud
a partir de eq et I'insére a sa place dans 'ABR.

1 def inserer(arb, eq):

2 """ Insertion d"une équipe a sa place dans un ABR contenant
3 au moins un noeud."""

4 if convert(eq.-temps_etape) < convert(arb.racine.temps_etape):
5 if arb.gauche is None:

6 arb.gauche = ...

7 else:

8 inserer(..., eq)

9 else:

10 if arb.droit is None:

11 arb.droit = Noeud(eq)

12 else:

13 S

10. Expliguer en quoi la fonction inserer est une fonction récursive.
11. Recopier et compléter les lignes 6, 8 et 13 de la fonction inserer.

12. Recopier et compléter les lignes 3 et 5 de la fonction est_gagnante ci-dessous
qui prend en parameétre un ABR arbre, de type Noeud, et qui renvoie le nom de
'équipe ayant gagné I'étape.

def est_gagnante(arbre):
if arbre_gauche == None:
return ...
else:
return ...

aArwWNE

Partie D : classement général

On décide d’établir un classement général obtenu a partir du cumul des temps mis par
chaque équipe pour parcourir 'ensemble des 9 étapes.

Sur le méme principe que I'arbre de la partie précédente, on construit 'ABR ci-dessous
qui permet, grace au parcours d’arbre approprié, d’établir ce classement général des
equipes.

Figure 2. ABR du classement général

Le reglement prévoit la disqualification d’'une équipe en cas de non-respect de celui-
ci. Il s’avere que I'équipe 2 et I'équipe 5 doivent étre disqualifiées pour manquement
au reglement. Les noeuds eq2 et eq5 doivent donc étre supprimés de I'ABR précédent.

Pour supprimer un nceud N dans un ABR, trois possibilités se présentent :

* le nceud N a supprimer est une feuille : il suffit de le retirer de l'arbre ;

* lenceud N a supprimer n'a qu'un seul fils : on relie le fils de N au pere de N et
on supprime le nceud N ;

* le nceud N a supprimer posséde deux fils : on le remplace par son successeur
(réquipe qui a le temps immédiatement supérieur) qui est toujours le minimum
de ses descendants droits.

13. Dessiner le nouvel arbre de recherche a_final obtenu aprés suppression des
equipes eqg?2 et eq5 dans I’ABR correspondant au classement général.

L’'organisateur souhaite disposer d’'une fonction rechercher permettant de savoir si
une équipe a été disqualifiee ou non. On donne les spécifications de la fonction
rechercher, prenant en paramétre arbre et equipe.

1 def rechercher(arbre, equipe):

> rein

3 Parametres

4 e

5 arbre : un ABR, non vide, de type Noeud, représentant le

6 classement général.

7 equipe : un élément, de type Equipe, dont on veut déterminer
8 1 "appartenance ou non a 1"ABR arbre.

9 Résultat

10 -———————

11 Cette fonction renvoie True si equipe est un neud de arbre,
12 False sinon.

13 e

14 -

Pour cette fonction (a_final désigne l'arbre obtenu a la question 13, apres
suppression des équipes 2 et 5) :

* l'appel rechercher(a_final, eql) renvoie True ;

* l'appel rechercher(a_final, eq2) renvoie False.

14. Ecrire le code de la fonction rechercher.

